Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 16006-16015, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617647

RESUMO

ASP flooding is an important method to further improve oil recovery by a large margin. At present, it has entered the stage of industrial application, but there are still problems of scaling in the injection production system and high production maintenance costs. Based on the industrialized mature technology of weak alkali ASP flooding, sodium chloride is used to replace sodium carbonate, and the alkali-free three-component flooding (TC) system in the Daqing Oilfield is developed by mixing with petroleum sulfonate and partially hydrolyzed polyacrylamide. Based on the experiments of viscosity increasing, interface performance, stability, adsorption, and oil displacement effect, the differences between the alkali-free TC system and the weak alkali ASP system are compared and analyzed. The laboratory research results show that both systems are basically the same in terms of viscosity, viscoelasticity, shear resistance, interfacial activity, stability, and flowability. Due to the lack of alkaline water, the adsorption, emulsification, and oil displacement performance of the alkali-free TC system is slightly lower than that of the weak alkali ASP system. The recovery factor of core flooding can be increased by 27.31% over water flooding, which is 2.56 percentage points lower than that of the weak alkali ASP system. On the premise of the same 1% EOR effect, the agent cost of the alkali-free system is 17.02% lower than that of the alkali ASP system. This article innovatively verifies the feasibility of using NaCl instead of Na2CO3 and explains the mechanism of significantly improving oil recovery in composite systems under alkali-free conditions from the ion level. However, the emulsification effect of the alkali-free TC system is relatively weak. The next step of research would be to consider adding an E-surfactant to enhance the emulsification performance of the composite system. By improving the system composition, technical references are provided for the efficient development of other terrestrial sandstone oilfields.

2.
Brain Behav ; 14(3): e3457, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450910

RESUMO

INTRODUCTION: Repeated exposure to cocaine induces microglial activation. Cocaine exposure also induces a release of high mobility group box-1 (HMGB1) from neurons into the extracellular space in the nucleus accumbens (NAc). HMGB1 is an important late inflammatory mediator of microglial activation. However, whether the secretion of HMGB1 acts on microglia or contributes to cocaine addiction is largely unknown. METHODS: Rats were trained by intraperitoneal cocaine administration and cocaine-induced conditioned place preference (CPP). Expression of HMGB1 was regulated by viral vectors. Activation of microglia was inhibited by minocycline. Interaction of HMGB1 and the receptor for advanced glycation end products (RAGE) was disrupted by peptide. RESULTS: Cocaine injection facilitated HMGB1 signaling, together with the delayed activation of microglia concurrently in the NAc. Furthermore, the inhibition of HMGB1 or microglia activation attenuated cocaine-induced CPP. Box A, a specific antagonist to interrupt the interaction of HMGB1 and RAGE, abolished the expression of cocaine reward memory. Meanwhile, the inhibition of HMGB1-RAGE interaction suppressed cocaine-induced microglial activation, as well as the consolidation of cocaine-induced memory. CONCLUSION: All above results suggest that the neural HMGB1 induces activation of microglia through RAGE, which contributes to the consolidation of cocaine reward memory. These findings offer HMGB1-RAGE axis as a new target for the treatment of drug addiction.


Assuntos
Cocaína , Proteína HMGB1 , Animais , Ratos , Núcleo Accumbens , Microglia , Receptor para Produtos Finais de Glicação Avançada , Cocaína/farmacologia
3.
Polymers (Basel) ; 16(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337273

RESUMO

This study examines a versatile polymer known as polysurfactant, which is synthesized by co-polymerizing flexible acrylamide and sodium acrylate hydrocarbon chain. The polymer serves as a backbone and possesses active functional groups. Notably, the polysurfactant exhibits superior plugging and flooding abilities compared to conventional polymers. The primary objective of this paper is to investigate the properties and oil displacement characteristics of the polysurfactant through indoor physical simulation experiments. The results demonstrate that the multi-branched structure of the polysurfactant enhances its ability to associate, leading to the formation of a unique spatial network structure. The inclusion of multi-branched structures notably amplifies the association effect. The critical concentration for the association is estimated to be around 800 mg/L, at which juncture the polysurfactant exhibits a viscosity retention rate surpassing 90% subsequent to shearing. Furthermore, this spatial network structure exhibits self-recovery capabilities after experiencing shear failure and displaying strong viscosity and shear resistance. In addition, the concentration of the polysurfactant can control the hydrodynamic feature size, which shows its adaptability in regulation and oil-repelling functions at reservoir permeabilities ranging from 500 to 2000 × 10-3 µm2 with resistance coefficients ranging from 108 to 320. During the microscopic oil displacement process, the polysurfactant exerts a significant impact on mobility control, while the elastic pull clearly demonstrates a commendable viscoelastic oil displacement effect. The polysurfactant exhibits a specific degree of emulsification capability towards crude oil, leading to the emulsion exhibiting typical pseudoplastic fluid characteristics. The utilization of emulsification transportation and emulsification blockage contributes to the enhancement of oil recovery. As a result, the polysurfactant exhibits multifaceted capabilities, encompassing profile control, flooding, and plugging, owing to its unique structural characteristics. Through the implementation of a field test focused on flooding in the Daqing Oilfield, a significant enhancement in the recovery rate of 10.85% is observed, accompanied by a favorable input-output ratio of 1:3.86, thereby generating significant economic advantages.

4.
Theranostics ; 14(2): 480-495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169536

RESUMO

Background: The neurobiological basis of gaining consciousness from unconscious state induced by anesthetics remains unknown. This study was designed to investigate the involvement of the cerebello-thalamus-motor cortical loop mediating consciousness transitions from the loss of consciousness (LOC) induced by an inhalational anesthetic sevoflurane in mice. Methods: The neural tracing and fMRI together with opto-chemogenetic manipulation were used to investigate the potential link among cerebello-thalamus-motor cortical brain regions. The fiber photometry of calcium and neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA) and norepinephrine (NE), were monitored from the motor cortex (M1) and the 5th lobule of the cerebellar vermis (5Cb) during unconsciousness induced by sevoflurane and gaining consciousness after sevoflurane exposure. Cerebellar Purkinje cells were optogenetically manipulated to investigate their influence on consciousness transitions during and after sevoflurane exposure. Results: Activation of 5Cb Purkinje cells increased the Ca2+ flux in the M1 CaMKIIα+ neurons, but this increment was significantly reduced by inactivation of posterior and parafascicular thalamic nucleus. The 5Cb and M1 exhibited concerted calcium flux, and glutamate and GABA release during transitions from wakefulness, loss of consciousness, burst suppression to conscious recovery. Ca2+ flux and Glu release in the M1, but not in the 5Cb, showed a strong synchronization with the EEG burst suppression, particularly, in the gamma-band range. In contrast, the Glu, GABA and NE release and Ca2+ oscillations were coherent with the EEG gamma band activity only in the 5Cb during the pre-recovery of consciousness period. The optogenetic activation of Purkinje cells during burst suppression significantly facilitated emergence from anesthesia while the optogenetic inhibition prolonged the time to gaining consciousness. Conclusions: Our data indicate that cerebellar neuronal communication integrated with motor cortex through thalamus promotes consciousness recovery from anesthesia which may likely serve as arousal regulation.


Assuntos
Anestesia , Córtex Motor , Camundongos , Animais , Estado de Consciência/fisiologia , Sevoflurano/efeitos adversos , Células de Purkinje/fisiologia , Cálcio , Inconsciência/induzido quimicamente , Neurônios , Glutamatos/efeitos adversos , Ácido gama-Aminobutírico
5.
Mol Neurobiol ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231323

RESUMO

Lactate is not only the energy substrate of neural cells, but also an important signal molecule in brain. In modern societies, disturbed circadian rhythms pose a global challenge. Therefore, exploring the influence of circadian period on lactate and its metabolic kinetics is essential for the advancement of neuroscientific research. In the present study, the different groups of mice (L: 8:00 a.m.; D: 20:00 p.m.; SD: 20:00 p.m. with 12 h acute sleep deprivation) were infused with [3-13C] lactate through the lateral tail vein for a duration of 2 min. After 30-min lactate metabolism, the animals were euthanized and the tissues of brain and liver were obtained and extracted, and then, the [1H-13C] NMR technology was employed to investigate the kinetic information of lactate metabolism in different brain regions and liver to detect the enrichment of various metabolic kinetic information. Results revealed the fluctuating lactate concentrations in the brain throughout the day, with lower levels during light periods and higher levels during dark periods. Most metabolites displayed strong sensitivity to circadian rhythm, exhibiting significant day-night variations. Conversely, only a few metabolites showed changes after acute sleep deprivation, primarily in the temporal brain region. Interestingly, in contrast to brain lactate metabolism, liver lactate metabolism exhibited a significant increase following acute sleep deprivation. This study explored the kinetics of lactate metabolism, hinted at potential clinical implications for disorders involving circadian rhythm disturbances, and providing a new research basis for clinical exploration of brain and liver lactate metabolism.

6.
Nat Commun ; 14(1): 7971, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042894

RESUMO

Ketamine produces rapid antidepressant effects at sub-anesthetic dosage through early and sustained activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), however, the exact molecular mechanism still remains unclear. Transmembrane AMPAR regulatory protein-γ8 (TARP-γ8) is identified as one of AMPAR auxiliary subunits, which controls assemblies, surface trafficking and gating of AMPARs. Here, we show that ketamine rescues both depressive-like behaviors and the decreased AMPARs-mediated neurotransmission by recruitment of TARP-γ8 at the postsynaptic sites in the ventral hippocampus of stressed male mice. Furthermore, the rapid antidepressant effects of ketamine are abolished by selective blockade of TARP-γ8-containing AMPAR or uncoupling of TARP-γ8 from PSD-95. Overexpression of TARP-γ8 reverses chronic stress-induced depressive-like behaviors and attenuation of AMPARs-mediated neurotransmission. Conversely, knockdown of TARP-γ8 in excitatory neurons prevents the rapid antidepressant effects of ketamine.


Assuntos
Ketamina , Camundongos , Animais , Masculino , Ketamina/farmacologia , Receptores de AMPA/fisiologia , Neurônios/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Antidepressivos/farmacologia
7.
ACS Omega ; 8(43): 40051-40062, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929121

RESUMO

So far, alkali/surfactant/polymer flooding is widely used in oilfields to improve recovery. However, the introduction of alkali to the ternary composite leads to substantial damage formation, accelerates the scaling and corrosion loss in all aspects of surface injection and recovery, and consequently increases the cost of oil recovery in the ternary composite drive field. Therefore, environmentally friendly means are in urgent demand. Alternatively, a new non-alkali ternary drive system with salt instead of alkali has been developed based on the basis of ternary composite drive in the Daqing oilfield. In this experiment, a mathematical model of oil repelling by a salt-substituted alkali-free ternary emulsion system is formed, followed by the verification of the wet-lab experiments. The results show that the alkali-free ternary emulsion system can have a synergistic effect of complex salt and petroleum sulfonate surfactant and represents a wide range of ultralow interfacial tensions and good oil-repelling performances. The chromatographic separation occurs in the transmission process due to the adsorption of porous media, and the lower the permeability and the lower the injection rate, the higher the chromatographic separation degree. The use of multistage plug injection can narrow the difference of flow rate between high and low permeability layers and improve the recovery rate to 61.59%. Herein, the results provide theoretical guidance for the application of an alkali-free ternary emulsification system.

8.
Cell Discov ; 9(1): 90, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644025

RESUMO

Dysfunctional autophagy and impairment of adult hippocampal neurogenesis (AHN) each contribute to the pathogenesis of major depressive disorder (MDD). However, whether dysfunctional autophagy is linked to aberrant AHN underlying MDD remains unclear. Here we demonstrate that the expression of nuclear receptor binding factor 2 (NRBF2), a component of autophagy-associated PIK3C3/VPS34-containing phosphatidylinositol 3-kinase complex, is attenuated in the dentate gyrus (DG) under chronic stress. NRBF2 deficiency inhibits the activity of the VPS34 complex and impairs autophagic flux in adult neural stem cells (aNSCs). Moreover, loss of NRBF2 disrupts the neurogenesis-related protein network and causes exhaustion of aNSC pool, leading to the depression-like phenotype. Strikingly, overexpressing NRBF2 in aNSCs of the DG is sufficient to rescue impaired AHN and depression-like phenotype of mice. Our findings reveal a significant role of NRBF2-dependent autophagy in preventing chronic stress-induced AHN impairment and suggest the therapeutic potential of targeting NRBF2 in MDD treatment.

9.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447785

RESUMO

Starting from the need for emergency rescue information transmission in tunnel engineering accidents, this article focuses on researching and solving the technical problems of information transmission between rescue personnel and trapped personnel after tunnel engineering collapse accidents, before and during the rescue process. The research objects are the information transmission channel and grounding electrode in the earth current field information transmission technology, and the electromagnetic characteristics of the earth medium and the electrical performance of the grounding electrode are studied and analyzed using the electromagnetic simulation software Maxwell based on finite element algorithm, establish a three-dimensional model based on the transmission of current field information of the ground electrode, analyze the effects of the electrode array, electrode depth, and radius on impedance. Research has shown that the impedance of the earth is related to the resistivity of the medium and is not a human-controllable factor. To reduce the contact impedance of an electric dipole antenna, one should start with the contact impedance of the earth electrode. The impedance of the transmitting end is an important factor affecting the efficiency of information transmission; parallel connection of multiple grounding electrodes, increasing the depth of grounding electrode penetration into the soil layer, and increasing the radius between grounding electrode pairs are all effective methods to reduce the contact impedance of electric dipole antennas, thereby improving information transmission capacity. To achieve wireless information transmission through the stratum, by appropriately selecting the operating frequency of electromagnetic waves, a certain distance of signal transmission can be achieved.


Assuntos
Algoritmos , Software , Humanos , Eletrodos , Fenômenos Eletromagnéticos , Impedância Elétrica , Tecnologia
10.
Neural Regen Res ; 18(11): 2449-2458, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37282476

RESUMO

Sleep benefits the restoration of energy metabolism and thereby supports neuronal plasticity and cognitive behaviors. Sirt6 is a NAD+-dependent protein deacetylase that has been recognized as an essential regulator of energy metabolism because it modulates various transcriptional regulators and metabolic enzymes. The aim of this study was to investigate the influence of Sirt6 on cerebral function after chronic sleep deprivation (CSD). We assigned C57BL/6J mice to control or two CSD groups and subjected them to AAV2/9-CMV-EGFP or AAV2/9-CMV-Sirt6-EGFP infection in the prelimbic cortex (PrL). We then assessed cerebral functional connectivity (FC) using resting-state functional MRI, neuron/astrocyte metabolism using a metabolic kinetics analysis; dendritic spine densities using sparse-labeling; and miniature excitatory postsynaptic currents (mEPSCs) and action potential (AP) firing rates using whole-cell patch-clamp recordings. In addition, we evaluated cognition via a comprehensive set of behavioral tests. Compared with controls, Sirt6 was significantly decreased (P < 0.05) in the PrL after CSD, accompanied by cognitive deficits and decreased FC between the PrL and accumbens nucleus, piriform cortex, motor cortex, somatosensory cortex, olfactory tubercle, insular cortex, and cerebellum. Sirt6 overexpression reversed CSD-induced cognitive impairment and reduced FC. Our analysis of metabolic kinetics using [1-13C] glucose and [2-13C] acetate showed that CSD reduced neuronal Glu4 and GABA2 synthesis, which could be fully restored via forced Sirt6 expression. Furthermore, Sirt6 overexpression reversed CSD-induced decreases in AP firing rates as well as the frequency and amplitude of mEPSCs in PrL pyramidal neurons. These data indicate that Sirt6 can improve cognitive impairment after CSD by regulating the PrL-associated FC network, neuronal glucose metabolism, and glutamatergic neurotransmission. Thus, Sirt6 activation may have potential as a novel strategy for treating sleep disorder-related diseases.

11.
Adv Sci (Weinh) ; 10(22): e2301110, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37325895

RESUMO

Hippocampal circuitry stimulation is sufficient to regulate adult hippocampal neurogenesis and ameliorate depressive-like behavior, but its underlying mechanism remains unclear. Here, it is shown that inhibition of medial septum (MS)-dentate gyrus (DG) circuit reverses the chronic social defeat stress (CSDS)-induced depression-like behavior. Further analysis exhibits that inhibition of gamma-aminobutyric acidergic neurons in MS projecting to the DG (MSGABA+ -DG) increases the expression of platelet-derived growth factor-BB (PDGF-BB) in somatostatin (SOM) positive interneurons of DG, which contributes to the antidepressant-like effects. Overexpression of the PDGF-BB or exogenous administration of PDGF-BB in DG rescues the effect of chronic stress on the inhibition of neural stem cells (NSCs) proliferation and dendritic growth of adult-born hippocampal neurons, as well as on depressive-like behaviors. Conversely, knockdown of PDGF-BB facilitates CSDS-induced deficit of hippocampal neurogenesis and promotes the susceptibility to chronic stress in mice. Finally, conditional knockdown platelet-derived growth factor receptor beta (PDGFRß) in NSCs blocks an increase in NSCs proliferation and the antidepressant effects of PDGF-BB. These results delineate a previously unidentified PDGF-BB/PDGFRß signaling in regulating depressive-like behaviors and identify a novel mechanism by which the MSGABA+ -DG pathway regulates the expression of PDGF-BB in SOM-positive interneurons.


Assuntos
Neurogênese , Ácido gama-Aminobutírico , Camundongos , Animais , Becaplermina/farmacologia , Neurogênese/fisiologia , Ácido gama-Aminobutírico/farmacologia , Antidepressivos/farmacologia , Giro Denteado/fisiologia
12.
Biol Psychiatry Glob Open Sci ; 3(2): 187-196, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124348

RESUMO

Pharmacological and anatomical evidence suggests that abnormal glutamatergic neurotransmission may be associated with the pathophysiology of depression. Compounds that act as NMDA receptor antagonists may be a potential treatment for depression, notably the rapid-acting agent ketamine. The rapid-acting and sustained antidepressant effects of ketamine rely on the activation of AMPA receptors (AMPARs). As the key elements of fast excitatory neurotransmission in the brain, AMPARs are crucially involved in synaptic plasticity and memory. Recent efforts have been directed toward investigating the bidirectional dysregulation of AMPAR-mediated synaptic transmission in depression. Here, we summarize the published evidence relevant to the dysfunction of AMPAR in stress conditions and review the recent progress toward the understanding of the involvement of AMPAR trafficking in the pathophysiology of depression, focusing on the roles of AMPAR auxiliary subunits, key AMPAR-interacting proteins, and posttranslational regulation of AMPARs. We also discuss new prospects for the development of improved therapeutics for depression.

13.
Mol Psychiatry ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914810

RESUMO

Recent studies based on animal models of various neurological disorders have indicated that mitophagy, a selective autophagy that eliminates damaged and superfluous mitochondria through autophagic degradation, may be involved in various neurological diseases. As an important mechanism of cellular stress response, much less is known about the role of mitophagy in stress-related mood disorders. Here, we found that tumor necrosis factor-α (TNF-α), an inflammation cytokine that plays a particular role in stress responses, impaired the mitophagy in the medial prefrontal cortex (mPFC) via triggering degradation of an outer mitochondrial membrane protein, NIP3-like protein X (NIX). The deficits in the NIX-mediated mitophagy by TNF-α led to the accumulation of damaged mitochondria, which triggered synaptic defects and behavioral abnormalities. Genetic ablation of NIX in the excitatory neurons of mPFC caused passive coping behaviors to stress, and overexpression of NIX in the mPFC improved TNF-α-induced synaptic and behavioral abnormalities. Notably, ketamine, a rapid on-set and long-lasting antidepressant, reversed the TNF-α-induced behavioral abnormalities through activation of NIX-mediated mitophagy. Furthermore, the downregulation of NIX level was also observed in the blood of major depressive disorder patients and the mPFC tissue of animal models. Infliximab, a clinically used TNF-α antagonist, alleviated both chronic stress- and inflammation-induced behavioral abnormalities via restoring NIX level. Taken together, these results suggest that NIX-mediated mitophagy links inflammation signaling to passive coping behaviors to stress, which underlies the pathophysiology of stress-related emotional disorders.

14.
Foods ; 12(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36613402

RESUMO

As a traditional folk medicine, pear paste has important nutritional and health effects. The physicochemical properties and antioxidant activities of pear pastes prepared from 23 different cultivars were investigated, including color parameters ( L*, a*, b* and h°), transmittance, pH, titratable acidity (TA), soluble sugar content, total phenolics content (TPC), total flavonoids content (TFC), DPPH and •OH radical scavenging activity (RSA), and ferric reducing antioxidant power (FRAP). It was demonstrated that the physicochemical properties and antioxidant activities of pear pastes from various cultivars differed significantly. Pear cultivars of "Mantianhong", "Xiangshui" and "Anli" possessing higher TPC and TFC exhibited excellent antioxidant activity determined by DPPH RSA, •OH RSA and FRAP, while the lowest TPC and TFC was observed for the cultivars of "Xueqing", "Nansui", "Hongxiangsu", and "Xinli No. 7", which also demonstrated the poor antioxidant activity. Multivariate analyses, including factor and cluster analysis, were used for the quality evaluation and separation of pear pastes based on their physicochemical and antioxidant properties. Factor analysis reduced the above thirteen parameters to final four effective ones, i.e. DPPH RSA, color b*, FRAP and TA, and subsequently these four parameters were used to construct the comprehensive evaluation prediction model for evaluating the quality of pear pastes. The pear pastes could be separated into three clusters and differentiated for the diverse of pear cultivars via cluster analysis. Consistently, "Mantianhong", "Xiangshui" and "Anli" pear with higher quality clustered into one group, in contrast, "Xueqing", "Nansui", "Hongxiangsu", and "Xinli No. 7" with lower quality clustered into the other group. It provided a theoretical method to evaluate the quality of pear paste and may help the fruit processing industry select the more suitable pear cultivars for pear paste making.

15.
Anal Chim Acta ; 1239: 340691, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628759

RESUMO

Bile acids (BAs) are a class of vital gut microbiota-host cometabolites, and they play an important role in maintaining gut microbiota-host metabolic homeostasis. Very recently, a new mechanism of BA anabolic metabolism mediated by gut microbiota (BA-amino acid conjugation) has been revealed, which provides a perspective for the research on BA metabolism and gut metabolome. In this study, we established a polarity-switching multiple reaction monitoring mass spectrometry-based screening method to mine amino acid-conjugated bile acids (AA-BAs) derived from host-gut microbiota co-metabolism. In addition, a retention time-based annotation strategy was further proposed to identify the AA-BA isomers and epimers. Using the developed methods, we successfully screened 118 AA-BA conjugates from mouse and human feces, 28 of them were confirmed by standards, and 62 putatively identified based on their predicted retention times. Moreover, we observed that the levels of most AA-BAs were significantly downregulated in the feces of chronic sleep deprivation mice, suggesting that the AA-BA metabolism was closely related to the physiological state of the host.


Assuntos
Aminoácidos , Ácidos e Sais Biliares , Camundongos , Humanos , Animais , Aminoácidos/análise , Cromatografia Líquida , Espectrometria de Massas , Ácidos e Sais Biliares/análise , Fezes/química
16.
Biosens Bioelectron ; 219: 114821, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279821

RESUMO

RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Inosine is one of the most prevalent modifications in RNA and dysregulation of inosine is correlated with many human diseases. Herein, we established an acrylonitrile labeling-mediated elongation stalling (ALES) method for quantitative and site-specific detection of inosine in RNA from biological samples. In ALES method, inosine is selectively cyanoethylated with acrylonitrile to form N1-cyanoethylinosine (ce1I) through a Michael addition reaction. The N1-cyanoethyl group of ce1I compromises the hydrogen bond between ce1I and other nucleobases, leading to the stalling of reverse transcription at original inosine site. This specific property of stalling at inosine site could be evaluated by subsequent real-time quantitative PCR (qPCR). With the proposed ALES method, we found the significantly increased level of inosine at position Chr1:63117284 of Ino80dos RNA of multiple tissues from sleep-deprived mice compared to the control mice. This is the first report on the investigation of inosine modification in sleep-deprived mice, which may open up new direction for deciphering insomnia from RNA modifications. In addition, we found the decreased level of inosine at GluA2 Q/R site (Chr4:157336723) in glioma tissues, indicating the decreased level of inosine at GluA2 Q/R site may serve as potential indicator for the diagnosis of glioma. Taken together, the proposed ALES method is capable of quantitative and site-specific detection of inosine in RNA, which provides a valuable tool to uncover the functions of inosine in human diseases.

17.
CNS Neurosci Ther ; 29 Suppl 1: 31-42, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36585803

RESUMO

AIMS: Patients with acute liver injury (ALI) can develop cognitive dysfunction (CD). The study investigated the role of gut microbiota and cerebral metabolism in ALI mice with and without CD. METHODS: Male C57BL/6 mice that received thioacetamide were classified into ALI mice with (susceptible) or without (unsusceptible) CD-like phenotypes by hierarchical cluster analysis of behavior. The role of gut microbiota was investigated by 16S ribosomal RNA gene sequencing and feces microbiota transplantation (FMT). 1 H-[13 C] NMR and electrophysiology were used to detect the changes in cerebral neurotransmitter metabolic and synaptic transition in neurons or astrocytes. RESULTS: Apromixlay 55% (11/20) of mice developed CD and FMT from the susceptible group transmitted CD to gut microbiota-depleted mice. Alloprevotella was enriched in the susceptible group. GABA production was decreased in the frontal cortex, while hippocampal glutamine was increased in the susceptible group. Altered Escherichia. Shigella and Alloprevotella were correlated with behaviors and cerebral metabolic kinetics and identified as good predictors of ALI-induced CD. The frequencies of both miniature inhibitory and excitatory postsynaptic currents in hippocampal CA1 and prefrontal cortex were decreased in the susceptible group. CONCLUSION: Altered transmitter metabolism and synaptic transmission in the hippocampus and prefrontal cortex and gut microbiota disturbance may lead to ALI-induced CD.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C57BL , Fígado , Transplante de Microbiota Fecal
18.
J Neurochem ; 164(5): 684-699, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36445101

RESUMO

The mechanism of propofol-anesthesia-induced loss of consciousness (LOC) remains largely unknown. We speculated that the adenosine A2A receptor serves as a vital molecular target in regulating LOC states under propofol anesthesia. c-Fos staining helped observe the changes in the neuronal activity in the nucleus accumbens (NAc). Initially, the adenosine signals in the NAc were measured under propofol anesthesia using fiber photometry recordings. Then, behavior tests and electrophysiological recordings were used to verify the effect of systemic A2A R agonist or antagonist treatment on propofol anesthesia. Next, the microinjection technique was used to clarify the role of the NAc A2A R under propofol anesthesia. Fiber photometry recordings were applied to assess the effect of A2A R agonist or antagonist systemic treatment on adenosine signal alterations in the NAc during propofol anesthesia. Then, as the GABAergic neurons are the main neurons in the NAc, we further measured the neuronal activity of GABAergic neurons. In our study, propofol anesthesia enhanced the neuronal activity in the NAc, and the adenosine signals were increased in the NAc. SCH58261 reduced the LOC time and sedative depth, while CGS21680 increased those via intraperitoneal injection. Additionally, CGS21680 increased the changes in delta, theta, alpha, beta, and low-gamma oscillations in the NAc. Moreover, microinjection of SCH58261 significantly shortened the LOC time, whereas microinjection of CGS21680 into the NAc significantly prolonged the LOC duration. The results illustrated that after A2A R agonist administration, the level of extracellular adenosine signals in the NAc was decreased and the neuronal activity of GABAergic neurons was enhanced, whereas after A2A R antagonist administration via intraperitoneal injection, the opposite occurred. This study reveals the vital role of the A2A R in propofol-induced LOC and that the A2A R could affect the maintenance of propofol anesthesia.


Assuntos
Inconsciência , Masculino , Animais , Camundongos , Inconsciência/induzido quimicamente , Inconsciência/metabolismo , Propofol/toxicidade , Anestesia , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Espaço Extracelular/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia
19.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292939

RESUMO

Superficial scald is a postharvest physiological disorder that occurs in pear during and after cold storage. In this study, the superficial scald index; α-farnesene and its oxidation products, conjugated trienols (CTols); phenolic content; and the expression of its related genes were investigated in two different pear cultivars, 'Wujiuxiang' (Pyrus communis L.) and 'Yali' (Pyrus bretschneideri R.), following 115 days of cold storage at 0 °C followed by 7 days of shelf life at 20 °C. The results indicated that the superficial scald occurred after 115 days of cold storage and became more severe during the shelf life of the 'Wujiuxiang' pear, whereas no scald was observed in 'Yali'. The α-farnesene levels increased rapidly at first and then decreased, while the CTols contents increased significantly in 'Wujiuxiang' as compared to 'Yali', and the expression levels of the genes involved in α-farnesene and CTols metabolism (HMGR1, HMGR2, GSTU7, GPX5, and GPX6), as well as the phenolic synthesis (PAL1, PAL2, C4H1, 4CL2, C3H, and ANR) of the peel, were significantly up-regulated at the onset of the superficial scald. In addition, the relative conductivity and contents of catechin and epicatechin were higher, and the expression level of the laccase gene (LAC7) significantly increased with the development of superficial scald, while lower contents of chlorogenic acid, arbutin, and isorhamnetin-3-3-glucoside, as well as the lower expression levels of a phenolic-synthesis-related gene (C4H3) and polyphenol oxidase genes (PPO1 and PPO5), were noticed in 'Wujiuxiang' as compared to 'Yali'. The results indicated that the onset and progression of superficial scald were associated with the accumulation of CTols, cell membrane breakdown, and higher catechin, epicatechin, and rutin contents, as well as the expression of associated genes of the peels of pear fruit.


Assuntos
Catequina , Pyrus , Pyrus/genética , Catequina/metabolismo , Ácido Clorogênico/metabolismo , Arbutina , Lacase/metabolismo , Frutas/genética , Frutas/metabolismo , Fenóis/metabolismo , Catecol Oxidase/metabolismo , Rutina/metabolismo
20.
Front Plant Sci ; 13: 987240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119567

RESUMO

Superficial scald is a serious physiological disorder in "Yali" pear (Pyrus bretschneideri Rehd. cv. Yali) after long-term cold storage. Changes in superficial scald, ethylene production, α-farnesene and phenylpropane metabolism with associated gene expression in "Yali" pear treated with and without (control) 1-methylcyclopropene (1-MCP) were investigated. Compared with the control group (without 1-MCP), 1-MCP (1.0 µl L-1) significantly lowered the superficial scald index after 180 days of cold storage. During cold storage and shelf life, the contents of α-farnesene, conjugated trienols, chlorogenic acid, and epicatechin in the peel were reduced, while quercetin was enhanced in 1-MCP-treated fruit, and the expression of genes associated with ethylene synthesis (ACS1, ACO1), receptors (ETR2, ERS1) and signal transduction (ERF1), α-farnesene metabolism (AFS1, HMGR2, GST7), phenolic biosynthesis (PAL1, C4H1, C4H2, HCT3, 4CL2, C3H), and oxidases (PPO1, PPO5, and LAC7) were significantly downregulated by 1-MCP. These results suggested that the onset and development of superficial scald was closely related to the ethylene receptor, conjugated trienols, chlorogenic acid and epicatechin and related genes expression in "Yali" pear.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...